Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences
نویسندگان
چکیده
In this paper we consider the class of simple graphs defined by excluding, as induced subgraphs, even holes (i.e., chordless cycles of even length) and diamonds (i.e., a graph obtained from a clique of size 4 by removing an edge). We say that such graphs are (evenhole, diamond)-free. For this class of graphs we first obtain a decomposition theorem, using clique cutsets, bisimplicial cutsets (which is a special type of a star cutset) and 2-joins. This decomposition theorem is then used to prove that every graph that is (evenhole, diamond)-free contains a simplicial extreme (i.e., a vertex that is either of degree 2 or whose neighborhood induces a clique). This characterization implies that for every (evenhole, diamond)-free graph G, χ(G) ≤ ω(G) + 1 (where χ denotes the chromatic number and ω the size of a largest clique). In other words, the class of (even-hole, diamond)-free graphs is a χ-bounded family of graphs with the Vizing bound for the chromatic number. The existence of simplicial extremes also shows that (even-hole, diamond)-free graphs are β-perfect, which implies a polynomial time coloring algorithm, by coloring greedily on a particular, easily constructable, ordering of vertices. Note that the class of (even-hole, diamond)-free graphs can also be recognized in polynomial time.
منابع مشابه
Even pairs and the strong perfect graph conjecture
We will characterize all graphs that have the property that the graph and its complement are minimal even pair free. This characterization allows a new formulation of the Strong Perfect Graph Conjecture. The reader is assumed to be familiar with perfect graphs (see for example [2]). A hole is a cycle of length at least five. An odd hole is a hole that has an odd number of vertices. An (odd) ant...
متن کاملEven and odd holes in cap-free graphs
It is an old problem in graph theory to test whether a graph contains a chordless cycle of length greater than three (hole) with a specific parity (even, odd). Studying the structure of graphs without odd holes has obvious implications for Berge’s strong perfect graph conjecture that states that a graph G is perfect if and only if neither G nor its complement contain an odd hole. Markossian, Ga...
متن کاملDecomposition of even-hole-free graphs with star cutsets and 2-joins
In this paper we consider the class of simple graphs defined by excluding, as inducedsubgraphs, even holes (i.e. chordless cycles of even length). These graphs are known aseven-hole-free graphs. We prove a decomposition theorem for even-hole-free graphs, thatuses star cutsets and 2-joins. This is a significant strengthening of the only other pre-viously known decomposition of ev...
متن کاملEven-hole-free graphs: a survey
The class of even-hole-free graphs is structurally quite similar to the class of perfect graphs, which was the key initial motivation for their study. The techniques developed in the study of even-hole-free graphs were generalized to other complex hereditary graph classes, and in the case of perfect graphs led to the famous resolution of the Strong Perfect Graph Conjecture and their polynomial ...
متن کاملTriangulated neighborhoods in even-hole-free graphs
An even-hole-free graph is a graph that does not contain, as an induced subgraph, a chordless cycle of even length. A graph is triangulated if it does not contain any chordless cycle of length greater than three, as an induced subgraph. We prove that every even-hole-free graph has a node whose neighborhood is triangulated. This implies that in an even-hole-free graph, with n nodes and m edges, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 99 شماره
صفحات -
تاریخ انتشار 2009